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Abstract. The Bag-of-Visual-Words (BoVW) model is a popular approach for
visual recognition. Used successfully in many different tasks, simplicity and good
performance are the main reasons for its popularity. The central aspect of this
model, the visual dictionary, is used to build mid-level representations based on
low level image descriptors. Classifiers are then trained using these mid-level
representations to perform categorization. While most works based on BoVW
models have been focused on learning a suitable dictionary or on proposing a
suitable pooling strategy, little effort has been devoted to explore and improve
the coupling between the dictionary and the top-level classifiers, in order to gen-
erate more discriminative models. This problem can be highly complex due to
the large dictionary size usually needed by these methods. Also, most BoVW
based systems usually perform multiclass categorization using a one-vs-all strat-
egy, ignoring relevant correlations among classes. To tackle the previous issues,
we propose a novel approach that jointly learns dictionary words and a proper top-
level multiclass classifier. We use a max-margin learning framework to minimize
a regularized energy formulation, allowing us to propagate labeled information
to guide the commonly unsupervised dictionary learning process. As a result we
produce a dictionary that is more compact and discriminative. We test our method
on several popular datasets, where we demonstrate that our joint optimization
strategy induces a word sharing behavior among the target classes, being able
to achieve state-of-the-art performance using far less visual words than previous
approaches.

1 Introduction

Bag-of-Visual-Words (BoVW) [24] is currently one of the most popular approaches
for solving visual recognition problems, like scene or object detection and categoriza-
tion. BoVW models encode information using a mid-level representation based on a
dictionary of visual words, which encodes appearance information from local patches
[15]. To perform categorization, these models are combined with top-level supervised
classifiers that are trained using the mid-level representations. Spatial information is

Acknowledgment: This work was partially funded by FONDECYT grant 1120720.



also usually incorporated into these models by concatenating information from differ-
ent spatial areas [11].

The construction of the visual dictionary is one the most important aspect of these
models. Commonly, it is built using generative approaches that minimize errors in patch
reconstruction, such as vector quantization [24] or sparse coding [32] techniques, In
these cases dictionary construction is decoupled from the training of top-level classifiers
[24,18]. As an alternative, discriminative dictionary construction strategies have also
been proposed but mostly considering a weak link to the training of top-level classifiers
[30,11].

Regarding the categorization process, BoVW models generally use a one-versus-all
classification strategy. Unfortunately, this scheme does not considers relevant corre-
lations among classes. Furthermore, they usually employ a visual dictionary for each
target class, an aspect that turns out to be critical when the number of classes increases.

In this work we introduce a novel approach for visual recognition that presents
two main contributions. Our first contribution is a method that jointly learns a suit-
able BoVW representations and top-level classifiers using a multiclass max-margin ap-
proach. The mathematical formulation behind this method is very general, however, we
focus on a BoVW representation using a Spatial Pyramid Matching scheme. In con-
trast to previous works, we model dictionary words as linear SVMs [22] using a direct
multiclass scheme. This allow us to pose our formulation as an energy minimization
problem. Furthermore, we combine the responses of these discriminative dictionary
words using a max-pooling strategy, as several recent works have shown the superiority
of max-pooling over alternative polling strategies [31,2].

Our second contribution is a direct result of our learning scheme. By using a joint
optimization strategy, we are able to induce word sharing among target classes. This
allows us to achieve state-of-the-art categorization performance in several common
benchmarks datasets, using an order of magnitude less words than previous approaches.
We believe that word sharing is a critical issue to the scalability of visual recognition
algorithms.

2 Related Work

BoVW model has remained throughout the last years as one of the the most common
strategies for visual recognition, mainly for its simplicity and good results [24,18]. At
the heart of this strategy lies the visual dictionary, which is used to quantize descriptor
vector extracted from images. Dictionary learning is generally performed using an unsu-
pervised method, like K-Means, to cluster the extracted descriptors [24,3,9,11,30,17,12].

In order to increase BoVW performance, sparse coding techniques have also been
used as a method for learning a visual dictionary and to quantize feature descriptors.
A remarkable example of this is [31], where sparse coding, max-pooling, and linear
SVMs are used to achieve excellent categorization performance. Discriminative sparse
representations have also been proposed [16], mostly building particular dictionaries
for each class. In [2,14], the coupling of dictionary and classifier learning is explored.
Altough similar in spirit to our work, here we explore a stronger form of coupling,
consisting of a shared dictionary of linear SVMs and a multiclass classifier, instead of



the standard one-vs-all framework. Also, they use different methods to obtain the visual
words and to build the mid-level representation used by the top-level classifier.

Deep belief networks (DBN) [7,10] applied to visual recognition also present some
similarities to our work, mainly regarding spatial pooling schemes and intermediate rep-
resentations based on linear filters. As a consequence of a multi-layered generic struc-
ture, DBNs have many parameters and they are usually difficult to train. This presents
a main difference to our work, as we embed semantic knowledge to our model by ex-
plicitly considering compositional relations among low level visual features, mid-level
visual words, and top-level classifiers, leading to a more meaningful and simpler archi-
tecture. Also, the Hinge loss function used in our work leads to a different mathematical
formulation.

Max-margin schemes have also been successfully used for visual recognition. Cur-
rently, one of the most used schemes is the one presented in [6], where a latent SVM
is used to learn a mixture of multiscale deformable part models for binary classifica-
tion. Also, in the area of action recognition, [29] proposes an extension to the method
of [6] that uses a multiclass classification scheme. Although our discriminative BoVW
model is also based on a max-margin approach, our hierarchical formulation, mid-level
pooling scheme, and training scheme are highly different that the ones used by part-
based approaches. In particular, our formulation is able to scale to cases that involve
hundreds of parts, while part-based approaches are designed to operate with a reduced
set of parts.

3 Model Description

3.1 Image Representation

We assume that visual descriptors [4,1] are extracted from images, either centered at
interest points or by using a dense sampling scheme, and that each of these descriptors
has size T . Also, inspired by the work of [8], we define a visual dictionary Θ of K
words,

Θ = [θ1 θ2 θ3 . . . θK ] ∈ R(T+1)×K , (1)

where each word θk is represented as a linear classifier with bias:

θk = [θk,1, θk,2, . . . , θk,T , bk]
T ∈ RT+1. (2)

To encode each descriptor, we use an encoding scheme based on the classification score
obtained by each dictionary word, similar to the one presented in [13]. More specifi-
cally, if v is a descriptor vector, its coding based on the dictionary Θ, cΘ(v), is defined
as:

cΘ(v) = [vT θ1, . . . , v
T θK ] = vTΘ (3)

In order to use dictionary words with a bias term as defined above, every descriptor
vector v has a constant 1 appended at the end. Intuitively, if the visual words are suffi-
ciently discriminative, the descriptor v should be similar to only a few words from the
dictionary. Therefore, we expect the vector cΘ(v) to have only a few values greater than
zero.



Given a dictionary Θ and a spatial pyramidal decomposition of the image into L
regions, we represent the image using max spatial pooling. For each region l, l ∈ [1, L],
let vl,j be its j-th descriptor vector, where j ∈ [1, Nl] and Nl is the number of descrip-
tors extracted from region l. Given a dictionaryΘ, we encode region l using max spatial
pooling as:

xl,Θ = [
Nl
max
j=1

vTl,jθ1,
Nl
max
j=1

vTl,jθ2, . . . ,
Nl
max
j=1

vTl,jθK ]T ∈ RK . (4)

As we are working in a discriminative setting instead of a generative one, like sparse
coding generated dictionaries, our scheme assigns negative weights instead of a zero-
weight to dictionary words with low similarity. As this can potentially lead to over-
fitting issues, we assume that each region l contains a null feature vector 0, whose
classification score is equal to zero for any of the dictionary words. Using this trick, if
in a given region none of the extracted feature vectors obtains a positive score, the max
score over the region will be obtained by the null feature vector, thus putting a zero
weight on the region descriptor.

Finally, the complete descriptor of an image I given a dictionary Θ, xΘ(I), is ob-
tained by concatenating the descriptors of its L regions, i.e.,

xΘ(I) = [x1,Θ, x2,Θ, . . . , xL,Θ]
T ∈ RKL. (5)

Figure 1 shows a diagram of the creation of the coding of an image region.

3.2 Image Classification

Given a descriptor for image I , xΘ(I), we define an image classification score, or en-
ergy function, for an image I as:

E(I, y,Θ,W ) = wTy xΘ(I). (6)

Here, wy ∈ RKL represents the parameters of a classifier learnt for object class y ∈
{1, 2, . . . ,M} and

W = [w1 w2 · · · wM ] ∈ RKL×M (7)

represents all the object classifier parameters.
If wy is divided in L sub-vectors of size K, each one assigned to a different region,

we can rewrite the energy in the following form:

E(I, y,Θ,W ) =

L∑
l

K∑
k

wy,l,k ·
Nl
max
j=1

(vTl,jθk). (8)

where wy,l,k refers to the k-th element of the l-th sub-vector of wy . This formulation
makes explicit the fact that the total energy of an image is a linear combination of max
functions. It can also be seen, that the energy function shows a linear dependence on the
weights wy , but a nonlinear one on the dictionary words. Figure 2 shows a schematic
view the construction of the energy function.



Fig. 1. Diagram of the coding of an image region l.

Given the parameters of the classifiers for the different object categories, W , and
the parameters of the classifiers for the different visual words, Θ, we classify an image
I as follows

y∗ = argmax
y

E(I, y,Θ,W ) (9)

4 Learning

The model described in the previous section depends on two sets of parameters: the
object classifiers W and the visual words classifiers Θ. Rather than first learning the
visual words and then learning the object classifiers, our goal is to learn both of them
simultaneously so that the visual words are discriminative for the visual classification
task.

More specifically, given a set of training examples {Ii, yi}Ni=1, where Ii is the i-
th image and yi is its class, we propose to find Θ and W by solving the following
regularized max-margin learning problem:

min
W,Θ,{ξi}

1

2
‖W‖2F +

C1

2K
‖Θ‖2F +

C2

N

N∑
i=1

ξi (10)

s.t. E(Ii, yi, Θ,W )− E(Ii, y, Θ,W ) ≥ ∆(yi, y)− ξi,
∀i ∈ {1, . . . , N} ∧ ∀y ∈ {1, . . . ,M}.



Fig. 2. Schematic view the construction of the energy function.

The objective function encourages the construction of visual words that behave like
linear SVMs, i.e., classifiers that jointly maximize the margin and minimize the loss.
On the other hand, the constraints encourage the score for an image according to its
ground truth label, E(Ii, yi, Θ,W ), to be higher than the score according to any other
label, E(Ii, y, Θ,W ), by a loss function ∆(yi, y) given by

∆(y1, y2) =

{
0 if y1 = y2

1 otherwise
. (11)

The slack variables ξi ≥ 0 allow for a violation of these constraints.
At first sight, one could think that the formulation in (10) is a particular case of

Structural SVM (S-SVM) [25]. However, this is not the case due to two fundamental
differences. First, the constraints are not linear in Θ, while in S-SVMs the constraints
are always linear in the parameters. Second, the optimization problem is not jointly
convex on Θ and W .

To see the latter, notice that the optimal solution for the slack variables is given by

ξ∗i (Θ,W ) = max
y

(E(Ii, y, Θ,W ) +∆(yi, y))− E(Ii, yi, Θ,W ) (12)

and recall that the point-wise maximum of convex functions is convex. Therefore, given
W ≥ 0, the energy in (8) is convex in Θ because it is the weighted sum of convex
functions with nonnegative weights. By the same argument, the first term in (12) is



convex, however the second one is concave. As a consequence, the objective function
for Θ given W ≥ 0 is the sum of a convex and a concave function in Θ. Otherwise,
the cost function is generally non-convex. On the other hand, notice that given Θ, the
objective function is convex in W , because the first term of (12) is a maximum of
convex functions, while the second term is linear in W .

Motivated by the above analysis, we propose to solve the problem in (10) using an
alternating minimization approach where we alternate between the computation of W
given a fixed Θ and the computation of Θ given a fixed W . Due to the non-convexity
of the cost function, there is no theoretical analysis guaranteeing its convergence. How-
ever, our experiments show that for suitable selection of the parameters, our procedure
does converge in practice.

Given Θ = Θ(t) at iteration t, the computation of W reduces to a standard multi-
class SVM problem, which can be efficiently solved, e.g., with a cutting-plane algorithm
[25]. Such methods typically produce a solution for both the classifier parameters W (t)

and the slack variables ξ(t)i .
GivenW =W (t) at iteration t, the computation ofΘ requires solving the following

problem

min
Θ

C1

2K
‖Θ‖2F +

C2

N

N∑
i

E(Ii, ŷi, Θ,W
(t))+∆(yi, ŷi)−E(Ii, yi, Θ,W

(t)) (13)

where
ŷi = argmax

y
E(Ii, y, Θ,W ) +∆(yi, y). (14)

As stated before, the optimization problem in (13) is not convex, hence we can not
guarantee that we find a global minimizer. We find an approximate solution by using
an interior point method [26] applied to an approximation of a modified version of
(13). The modification consists of solving the problem in (13) subject to the additional
constraints

E(Ii, y, Θ,W
(t))− E(Ii, yi, Θ,W

(t)) +∆(yi, y) ≤ ξ(t)i
∀i ∈ {1, . . . , N} ∧ ∀y ∈ {1, . . .M}. (15)

These additional constraints ensure that the new slack variables (after modifyingΘ) are
at most equal to the slack variables at the previous iteration (obtained after modifying
W ). The approximation consists of replacing the max-pooling function by a soft-max
approximation to ensure differentiability. Specifically, we use the log-sum-exponential
(LSE) approximation,

N
max
i=1

(zi) ≈
1

r
log(

N∑
i

exp(rzi)) (16)

which preserves the convexity of the point-wise maximum operation. The parameter
r controls the sharpness of the approximation, where larger values generate better ap-
proximations. The energy function finally becomes:

E(I, y,Θ,W ) ≈
L∑
l

K∑
k

wy,l,k
r

log(

Nl∑
j

exp(r · v̂Tl,jθk)). (17)



Te solve the approximate optimization problem we require the partial derivatives of
the objective function and the partial derivatives of the constraints, both of which are
straightforward to obtain from (17).

5 Experiments

We performed evaluations on 3 different datasets (Caltech 101, 15 Scene Categories,
and MIT67 Indoor) and analyzed the potential performance gains delivered by the dic-
tionary update step and classification performance compared to other methods. We ob-
tain as main results i) state-of-the-art performance on 2 datasets when compared to other
similar methods and ii) the generation of a unique dictionary of discriminative patches
shared among target classes, with an order of magnitude less visual words than similar
approaches.

5.1 Implementation Details

– Feature extraction: Images are downsized to no more than 300 pixels in each
direction. Local HOG-LBP descriptors [28] are then extracted from each image
using a dense grid of regions of 16x16 pixels, with a spacing of 8 pixels in each
direction. We use a spatial pyramidal decomposition with 21 regions (depth 2).

– Initial dictionary: To obtain the initial dictionary, we sample 100.000 descriptors
from training images and cluster them with K-Means. After this process, a linear
SVM is trained for each centroid, using as positive examples the ones belonging to
that centroid and as negative examples descriptors belonging to the other centroids.

– Nonlinear optimization: To implement the gradient descent step for the dictionary
estimation, we use the interior point solver Ipopt (Interior Point OPTimizer) [26].
This solver is optimized for large scale constrained nonlinear problems as our case.

5.2 Datasets details

– Caltech101: This dataset is formed by 101 object categories plus a background
class. We use 10 random splits of the data, keeping 30 images for training and the
rest for testing.

– 15 Scene Categories: This dataset contains 15 diferent natural scene categories.
We use 10 random splits of the data, keeping this time 100 images for training and
the rest for testing.

– MIT67 Indoor: This dataset contains 67 different indoor scene categories, with a
very high intra-class variation. We use the standard evaluation procedure, using 80
images per class for training and 20 for testing.

5.3 Behavior of dictionary words

The purpose of this experiment is to visually appreciate some dictionary words before
and after the dictionary update process. Figure 3 shows a group of patches from 15



Scene Categories that initially obtain high response for a dictionary word that encour-
ages diagonal lines. The six patches on the left obtain a high score before and after the
dictionary update, while the four patches on the right obtain a high score before the
update, but after it obtain a very low score, using the same dictionary word.

Fig. 3. The dictionary update step gradually reduces the score of noisy patches (right).

The set of patches on the left in Figure 3 show a more homogeneous appearance
than the ones on the right. Despite also showing diagonal lines, the presence of noise
in the rightmost patches, makes them more prone to be confused with other patches
that show structures diferent than the one represented by that dictionary word. Our
algorithm, using the max-pooling and the classifier weights, its able to progresively
reduce the score of these patches, by updating the dictionary words accordingly.

5.4 Classification performance

As we mentioned, we test our method using three datasets: Caltech101, 15 Scene Cat-
egories, and MIT67 Indoor. Table 1 shows our first experiment designed to evaluate
performance evolution as a function of the number of dictionary words. There is a ma-

Number of Words
Dataset 50 100 200

Caltech101 63.1 ± 0.8 72.0 ± 0.5 73.1 ± 0.5
15 Scenes 72.2 ± 0.5 83.7 ± 0.2 84.8 ± 0.2

MIT67 Indoor 31.2 38.3 39.9

Table 1. Performance evolution in function of number of dictionary words.

sive performance gain when dictionary size grows from 50 to 100 words. After that, the
gain is less significant but clearly measurable. Unfortunately, due to memory require-
ments associated to our current implementation, it was not possible to test with a higher
number of words.

The next experiment compares our results against methods using only a BoVW
scheme, without the aid of global features [19] or object models [6], and a fixed spatial



Dataset
Method # Words Caltech101 15 Scenes MIT67
Baseline 200 63.9 ± 0.6 78.1 ± 0.3 33.2
SPM [12] 400 64.6 ± 0.8 81.4 ± 0.5 -
LLC [27] 2048 73.4 80.5 ± 0.6 -

LCSR [21] 1024 73.2 ± 0.8 82.7 ± 0.5 -
ScSPM [31] 1024 73.2 ± 0.5 80.3 -

Max-margin [14] 5250 - 82.7 ± 0.5 -
Object Bank [13] 200 - 80.9 37.6

Reconfigurable Models [20] 200 - 78.6 ± 0.7 37.9
Discriminative Patches [23] 14070 - - 38.1

Proposed 200 73.1 ± 0.5 84.8 ± 0.2 39.9
Table 2. Our proposed method achieves state-of-the-art performance in 2 out of 3 datasets using
only 200 words.

pyramid matching scheme with at most depth 2, i.e. 21 pooling regions. Table 2 shows
the results. We also include a baseline method in the comparison, consisting in only
solving the problem in 10 with a fixed Θ.

We can observe that we achieve state-of-the-art performance in 15 Scene Categories
and MIT67 Indoor, while obtaining competitive results in Caltech101. An important
aspect of our results is that we use only 200 dictionary words, where other methods use
more than thousand. In particular, in the case of Caltech101, we believe that our current
dictionary size might be hurting performance, as the high number of categories might
require a larger dictionary size for better results.

6 Conclusions and Future Work

BoVW models are commonly based on two main steps: first learning the dictionary and
then learning classifiers that use this dictionary. In this work we present a novel method
for jointly learning a dictionary of discriminative visual words and a top-level classifier
using a multiclass max-margin approach. Our formulation is highly general an can be
adapted to various spatial decompositions of images. In particular, when we compare
several techniques based on a spatial pyramid matching scheme, our method achieves
state-of-the-art performance on two of the three datasets considered in our experiments
(15 Scenes and MIT67).

Regarding the resulting dictionary, the proposed joint learning scheme produces a
strong sharing of visual words among the target classes. In practice, this allows us to
use a dictionary that has an order of magnitude less visual words than previous BoVW
methods, but without reducing recognition performance. As the number of target object
classes increases in practical applications, word sharing will become a relevant issue,
since time spent obtaining responses for different linear classifiers (at the level of dic-
tionary words and top-level classifier) will be a major processing bottleneck.

Future work will focus on using multiscale patches to enrich our hypothesis space,
thus allowing us to search for suitable dictionary words that represent more meaningful



visual structures. We also plan to improve running time and memory use, in order to be
able to evaluate performance on new larger datasets [5].
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